Astrobiology aspects in the JUICE mission

JUICE Science Themes

- Emergence of habitable worlds around gas giants
- Jupiter system as an archetype for gas giants

This talk

- Overview of over-arching questions
- Deep oceans at Europa and Ganymede
- Mission Design
- Planetary protection
- What is next?

JUICE concept

- European-led mission to the Jovian system
- First L-class mission of the Cosmic Vision Programme
- 3.5 years in-system
- First orbiter of an icy moon

Astrobiology aspects in the JUICE mission

JUICE is not a mission dedicated to astrobiology ...

Exploration of the habitable zone: Ganymede, Europa, and Callisto				
Characterise Ganymede	Characterise the extent of the ocean and its relation to the deeper interior			
as a planetary object and possible habitat	Characterise the ice shell			
*	Determine global composition, distribution and evolution of surface materials			
	Understand the formation of surface features and search for past and present activity			
	Characterise the local environment and its interaction with the jovian magnetosphere			
Explore Europa's	Determine the composition of the non-ice material, especially as related to habitability			
recently active zones	Look for liquid water under the most active sites			
	Study the recently active processes			
Study Callisto as a	Characterise the outer shells, including the ocean			
remnant of the early jovian system	Determine the composition of the non-ice material			
	Study the past activity			
Explore the Jupiter syste	m as an archetype for gas giants			
Characterise the Jovian	Characterise the atmospheric dynamics and circulation			
atmosphere	Characterise the atmospheric composition and chemistry			
	Characterise the atmospheric vertical structure			
Explore the Jovian	Characterise the magnetosphere as a fast magnetic rotator			
magnetosphere	Characterise the magnetosphere as a giant accelerator			
	Understand the moons as sources and sinks of magnetospheric plasma			
Study the Jovian satellite	Study Io's activity and surface composition			
and ring systems	Study the main characteristics of rings and small satellites			

Overview of over-arching questions

Cosmic Vision: The quest for evidence of life in the Solar System must begin with an understanding of what makes a planet habitable

Ganymede and Europa are the archetypes of two classes of habitable worlds

From the Jovian system to extrasolar planetary systems

JUICE

Waterworlds and giant planets

Habitable worlds

Astrophysics Connection

At Ganymede, JUICE will characterise an entire family of exoplanets: the waterworlds. At Jupiter, JUICE will further explore an archetype for giant exoplanets.

The ocean worlds

Science objectives at Europa strongly related to astrobiology – ocean characteristics Complex chemistry The composition of ices Intensité Relative **Epsomite** Europa icy (NIMS) Pure ice Europa non icy (NIMS) 1.0 Longueur d'onde (µm) from McCord et al. (1999)

Science objectives at Europa strongly related to astrobiology – ocean characteristics

Europa – detection of an induced magnetic field

The context

Icy worlds – detection of a plume in the South pole?

Astrobiology at Ganymede - characteristics of the ocean layer

Galileo evidences

Induced magnetic field

Observed but not chara

From liquid domains to habitable worlds

Waterworlds: If habitable, the liquid layers are trapped between two icy layers

Occurrence:

Largest moons, hot ice giants, ocean-planets...

Most common habitat in the universe?

Key question:

Are these waterworlds habitable?

What JUICE will do:

Via characterisation of Ganymede, will constrain the likelihood of habitability in the universe **Europa-like:** If habitable, the liquid layers may be in contact with silicates as on Earth

Occurrence:

Europa, Enceladus
Only possible for very small bodies

Key question:

How are the surface active areas related to potential deep habitats?

What JUICE will do:

Pave the way for future landing on Europa Better understand the likelihood of deep local habitats

Mission design

Spacecraft Design

Spacecraft Design

- Prime industrial Contractor: Airbus Defence & Space (Toulouse, France), selected in July 2015
- Spacecraft:
 - 3-axis stabilised
 - Mass:
 - Launch mass: 5264 kg
 - Instruments: 219 kg
 - Propellant: 2857 kg
 - Solar array 97 m² (~850 W at Jupiter)
 - Fixed High Gain Antenna (X, Ka Bands)
 - Steerable Medium Gain Antenna (X, Ka Bands)
 - Data Volume > 1.4 Gb per day

Mission profile

JUICE

Launch	06.2022
1. Interplanetary Transfer	7.6 years
Jupiter Orbit Insertion	01.2030
2. Jupiter equatorial phase #1	~11 mon
3. Two Europa flybys	36 days
4. Jupiter high-latitude phase including Callisto flybys	~6 mon
5. Jupiter equatorial phase #2	~11 mon

Ganymede phases	
6. Elliptic #1	30 days
7. High altitude (5000 km)	90 days
8. Elliptic #2	30 days
9. Circular (500 km)	130 days
Total mission duration in the Jovian system	> 3 years

Mission design

Science Payload

Acronym	PI		LFA	Ins	strument type
Remote Sensing Suite					
JANUS	P. Palumbo, R. Jaur	mann	Italy, Germany	7	Narrow Angle Camera
MAJIS	Y. Langevin, G. Pic	ecioni	France, Italy		Vis-near-IR imaging spectrometer
UVS	R. Gladstone		USA		UV spectrograph
SWI	P. Hartogh		Germany		Sub-mm wave instrument
Geophysical Experiments					
GALA	H. Hussmann		Germany		Laser Altimeter
RIME	L. Bruzzone, J. Pla	ut	Italy, USA		Ice Penetrating Radar
3GM	L. Iess, D.J. Steven Kaspi	ison, Y.	Italy, USA, Israel		Radio science experiment
Particles and Fields Investigations					
PEP	S. Barabash, P. Bra P. Wurz	ndt,	Sweden, USA, Switzerland	,	Plasma Environmental Package
RPWI	JE. Wahlund, B. O	Cecconi	Sweden, Franc	:e	Radio & Plasma Wave Instrument
JMAG	M. Dougherty		UK		Magnetometer

Three large icy moons to explore

Ganymede

- Largest satellite in the solar system
- A deep ocean
- Internal dynamo and an induced magnetic field unique
- Richest crater morphologies
- Archetype of waterworlds
- Best example of liquid environment trapped between icy layers

Callisto

- Best place to study the impactor history
- Differentiation still an enigma
- Only known example of non active but ocean-bearing world
- The witness of early ages

Europa

- A deep ocean
- An active world?
- Best example of liquid environment in contact with silicates

Explore Europa recently active zones

Flyby strategy:

- In-situ observations
- Imaging
- Infrared observations
- Ice penetrating radar
- altimetry

Ganymede: planetary object and potential habitat

Astrobiology at Ganymede - characteristics of the ocean layer

Planetary protection

JUICE and astrobiology (wrt mission constraints)

The planetary protection issue

Planetary Protection Mission Categories

	ANET ORITIES	MISSION TYPE	MISSION CATEGORY
A	Not of direct interest for understanding the process of chemical evolution. No protection of such planets is warranted.	Any	I
В	Of <u>significant interest relative to the process of</u> <u>chemical evolution</u> , but only a <u>remote chance that</u> <u>contamination</u> by spacecraft could compromise future exploration. Documentation is required.	Any	II
C	Of <u>significant interest relative to the process of</u> <u>chemical evolution and the origin of life</u> or for	Flyby, Orbiter	III
	which scientific opinion provides a significant chance of contamination which could compromise a future biological experiment. Substantial documentation and mitigation is required.	Lander, Probe	IV
All	Any Solar System Body	Earth-Return	V

Ganymede class II*

Prove that exchange with subsurface is strongly suppressed or impossible

Europa - class III

Ganymede: Exchange processes from space to habitable zones

Summary and conclusion

Layer	Minimal Thickness	Downward migration process	Time duration (years)	Comments
(from top to bottom)				
Regolith First centimeters of the crust Diffusion		a few years	Impact is the only way to introduce microorganisms into the regolith in a short time scale.	
		Impact	<< 1 year	
icy crust (stagnant	From a few kilometers to	Diffusion	Several millions of	No way envisaged to go through the lid
lid) and upper	a few tens of kilometers		years	in a short time scale. Geologic evidences
thermal boundary				demonstrate that the faults cannot
layer		Tectonism	<< 1 year but	propagate through the total thickness of
			extremely unlikely	the crust because it is too thick.
			through the entire lid	
Convecting layer	From a few kilometers to	convective transport up to a	a few thousand years	Duration estimate is based on a very
	a few tens of kilometers	few m/yr along a descending		conservative approach regarding the
		cold plume.		vigour of convection.
Lower thermal	A few hundred meters	Almost impossible - Diffusion	a few thousand years	Upwards thermal buoyancy impedes
boundary layer		could be envisaged	at least if diffusion is feasible	downwards migration.
		Fractures	<< 1 year	No evidences that such fractures exist

COSPAR's categorisation (II*) – our suggestion is that it should be class II:

Ganymede is of significant interest relative to the process of chemical evolution and the origin of life, and there is only a **remote** chance that contamination by a spacecraft could compromise future investigations.

- 36 day fly-by period from leaving Callisto until return to Callisto
- 2 Europa fly-bys
 - First 10 days after leaving Callisto
 - Second 14 days after the first
- Callisto GA 12 days after Europa
- S/c velocity relative to Europa:
 4.5 km/s

What is next for astrobiology in the outer solar system?

What's next?

To do astrobiology on a planet/moon, there is a need for big rovers

What's next?

No roadmap so far for astrobiology in the outer solar system

Astrobiology

Suburface investigations

Astrobiology

Surface investigations

Encelad s mission

Astrobiology

Sample return

Europa touchdown? Plume activity?

Characterisation of the habitable domains

New mission ??

Exploration

Evidences for habitability

Galileo

