ANALOG MISSIONS of the Austrian Space Forum

Gernot Groemer Austrian Space Forum

Research focus

• Hardware development:

- Aouda.X spacesuit simulator
- Mars analog rovers
- Stratospheric balloons & Cubesats

Research focus

- Planetary surface operations
- Planetary protection
- Optimizing remote science support
- Major field campaigns: 11 so far
 - E.g. Rio Tinto 2011, Dachstein 2012 (NASA/JPL, Exomars-participation, Morocco 2013)

PolAres programme

- Passepartout stratospheric ballon
- Phileas rover
- Aouda spacesuit simulator
- **Goal:** preparing exploration strategies for a human-robotic Mars expedition with a focus on planetary protection.
- PolAres reference mission architecture

Aouda.X spacesuit simulator prototype

- Based upon NASA DRM 5.0 & Aurora
- NASA Human-System Standard STD-3000 & MIL-STD-882c
- <45 kg, unpressurized, Hard-Upper Torso, custom-built OBDH and advanced humanmachine-interface
- Outer layer optimized for planetary protection, 4-6 hours field operations
- Broadband telemetry

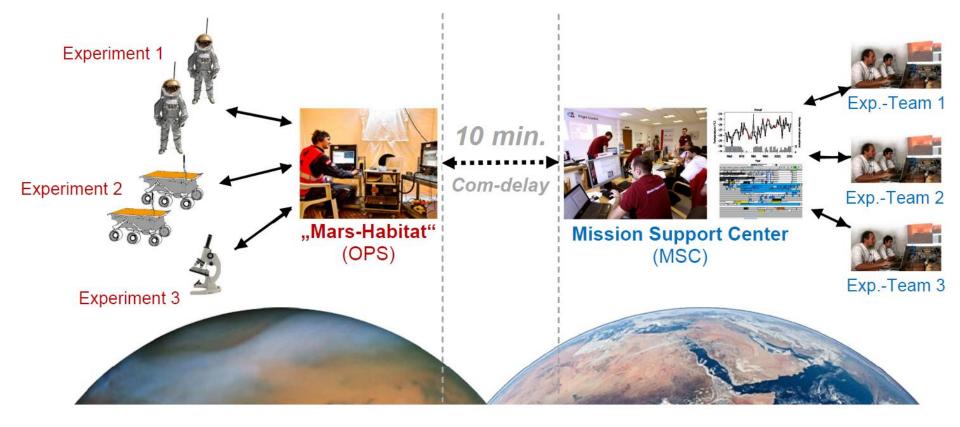
Groemer et al., 2012, The Aouda.X space suit simulator and its applications Astrobiology. February 2012, 12(2): 125-134.

Precursor Field Tests

International Mars Simulation In Rio Tinto/Spain 2011

Focus:

- Human robotic interaction
- Geoscience & Remote Science Support

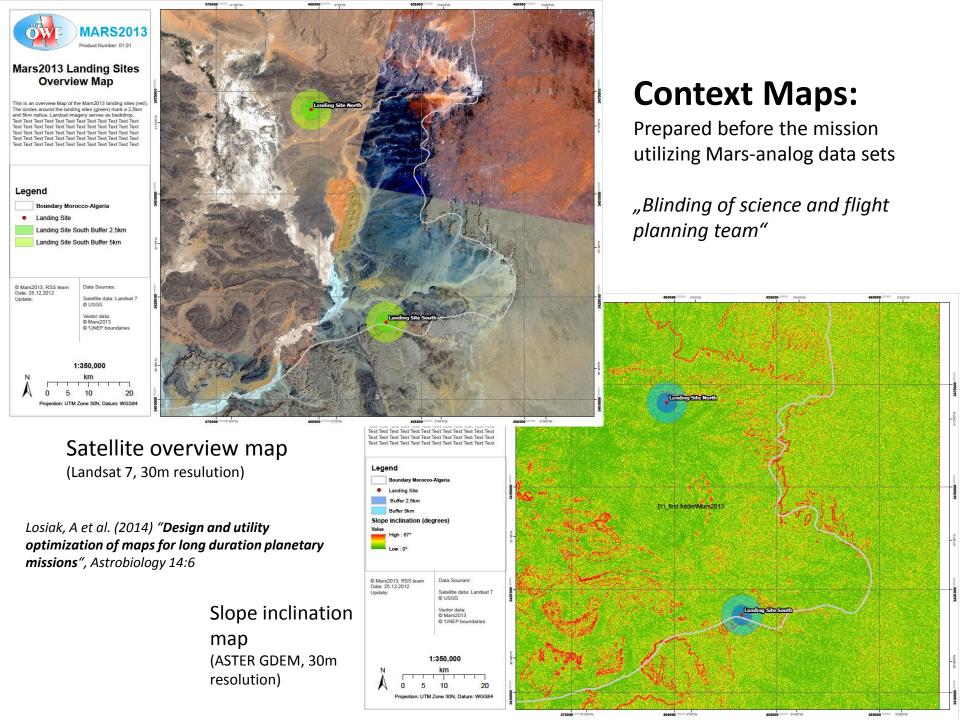

Orgel, C., et al. "SCIENTIFIC RESULTS AND LESSONS LEARNED FROM AN INTEGRATED CREWED MARS EXPLORATION SIMULATION AT THE RIO TINTO MARS ANALOGUE SITE, Acta Astronautica 94/2 (2014)

Dachstein Ice Caves

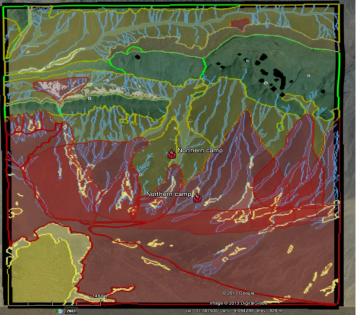
Subsurface field tests in Austria, 2012

Remote Science Support Terrain Trafficability tests & Robotics Contamination vector analysis Ground validation of EXOMARS instrument

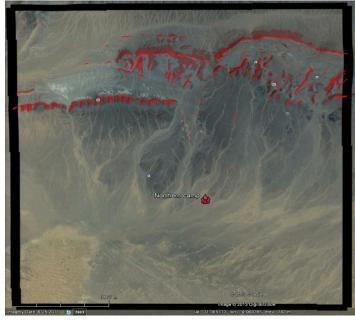
Previous system integration field tests


- Field-Test 1 Comissioning July 2009, Kramsach, Austria
- Field-Test 2 Pasterze-Glacier, August 2009, Austria
- Field-Test 3 Cryo-Test, September 2009, Seefeld, Austria
- Field-Test 4 Eifel-region, September 2009, Germany
- Field-Test 5 Koppenbrueller-Cave, January 2010, Austria
- Field-Test 6 Innsbruck, May 2010, Austria
- Field-Test 7 Kaunertal Glacier, July 2010, Austria
- Field-Test 8 Rio Tinto Integrated Sim, April 2011, Spain
- Field-Test 9 Dachstein Ice Caves, May 2012, Austria
- Field-Test 10 MARS2013, February 2013, Morocco
- Field Test 11 AMADEE-15 Glacier, August 2015, Austria

complexity St ţ σ **D**


Precursor site assessements

- Geological analysis, precursor sampling
- Safety/Security/Logistics analysis
- Erfoud/Morocco region exhibits similarities to Mars

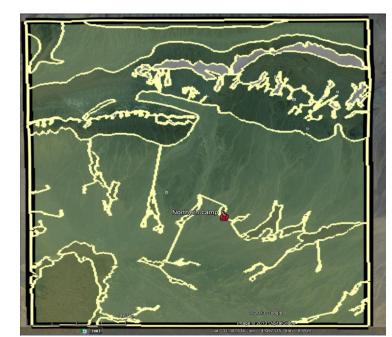


Basic Maps:

Prepared before the mission, regularly updated during the mission

Geological Map

Terrain Risc Map



Wifi Coverage Map

Legend Basement Units

Layered Unit Cones Units Cones Unit Surficial Units

Suitability Map (example: SREC-Experiment)

Analog Astronaut Selection 2015

- 100 applicants, 6 analog astronaut candidates
- 637 selection tests: psychological, physiological, team-fit, endurance, etc
- Only standing AA corps in Europe

Analog astronaut class of 2015 (from 100 candidates, 5 month basic training)

Mission Experiment Examples

MAGMA / L.I.F.E.-Laser

Robotic vehicle of ABM Space/Poland Instrument: Bioflourescence laser (Univ. of Innsbruck/Austria)

Controlled from Torun/Poland

G. Groemer, et. al (2014), **Robotic Field-Validation of Laser Induced** Fluorescent Emission (L.I.F.E- Instrument) during the Mars2013 Analog Mission", Astrobiology 14:5

Cliff Recon Vehicle

(Association Planete Mars, France)

Human-operated vehicle for steep terrain High-resolution imagery

PULI Rover (GLXP Hungary)

Autonomous (lunar) rover Terrain & teleoperation tests

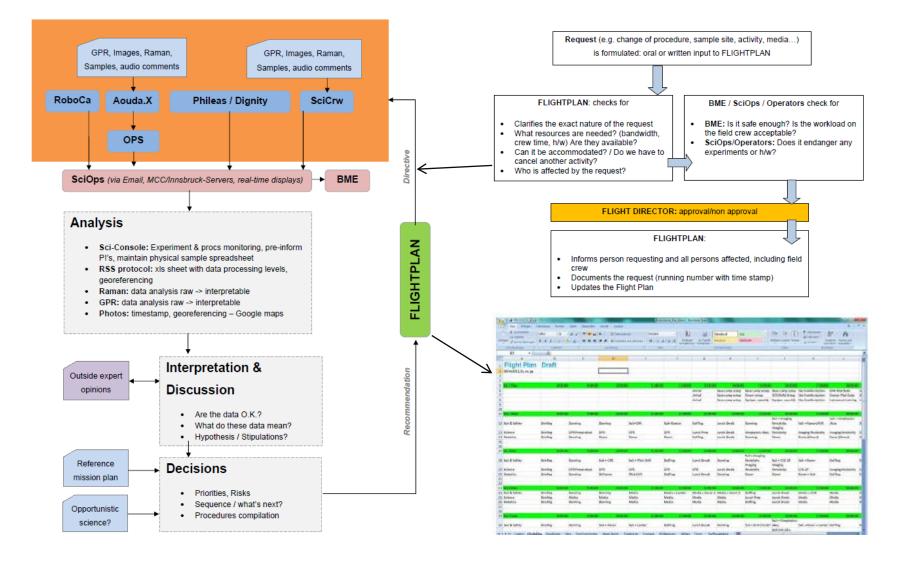
SET COMEXPRIZE

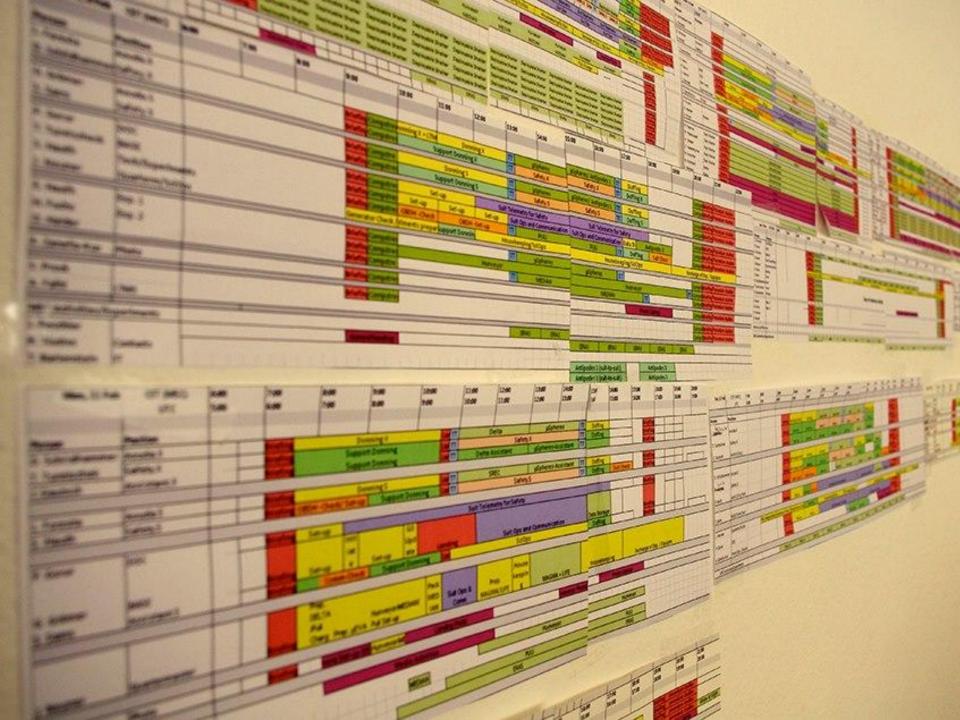
Deployable Shelter (TU Vienna / OeWF)

Inflatable/pressurizable shelter Proof-of-concept study

Haeuplik, S., et al. (2014) MASH – **Deployable and potable** emergency shelter for Mars, 19th IAA Humans in Space Symposium, Cologne, Germany

microEVA (NASA/JPL-OeWF)


Quantifying contamination vectors for planetary protection


G. Groemer, et al. (2012) "The Aoud Suit Simulator and Its Applications Astrobiology", ASTROBIOLOGY, 12:2

Epiflourescence pattern with contaminated surface under excitation.

Mission Support

21 Feb	CET (MSC)	9:00	10:00	11:00	12:00	13:00	14:00	14:00			16:00	17:00	18:00	19:00
	UTC	8:00	9:00	10:00	11:00	12:00	13:00		14:00		15:00	16:00	17:00	18:00
	Position													
/	Aouda.X/Exp.	Briefing	Donning X+LTMS	5	DELTA	SRI	EC	DELTA	DELTA	Doffing	DELTA Df (a	Iternating)		Briefing oc
	Safety.X/Exp.	Briefing	Support Donning	Į.	Safety.X			Safety.X Doffing	DELTA Df (alternating)			Briefing oce		
4	Assistant/Exp.	Briefing	Support Donning	ζ.	Assistant.X	Assist	ant.S	Ass.X	Ass.X	Doffing	Deployable	Shelter Df		Briefing bo
	Aouda.S/Exp.	Briefing	Donning S		SREC	Deployable Shelte		LIFE	LIFE LIFE	Doffing	Deployable Shelter Df			Briefing oc
	Saftey.S	Briefing	Briefing Photo						Safety.S	Doffing				Briefing oc
	Photo	Briefing							Photo Photo Laptor					Briefing oc
	DOC	Briefing							Suit Telemetry for Safety					Briefing oc
	Experimenter Briefing Hunveyor TT		YELLOW	YELLOW TT MEDIA		IAN		MAN			Hunveyor	Briefing to		
8	BASE	Briefing	riefing Communication/SciOps						Communication/SciOps					Briefing oc
			Charge Griefing riments prepari PULI Housekeeping/SciOps						ousekeep			of Exp. / Equipm		Briefing oc

ÖWE

Daily Activity Package for DAY "12" (12/08/2015)

Daily Activity Package (DAP) for 12 Aug 2015

Developed by:	Date of Development:			
Nina Sejkora	11 Aug 2015			
Silvio de Carvalho				
Claudia Rieger	VERSION			
Peter Hartman	#4			
Helgel Tuschy				
Marcello Valdatta				
Approved by:	Date of Approval:			

1.	General Information	
2.	Progress and Priorities	
3.	Field Activity Plan (FAP)4	
4.	Traverse Plan for A.S & A.X	
5.	Additional Information	
Su	ggested Scenarios for the Night Shooting12	

The DAP provides a "best-fit" suggestion for field activities and traverses based on most recent data. The DAP does not constitute a command order nor claims to be irreproachable. Therefore use your autonomy and decide ad-hoc on changes or delays.

If you take decisions other than suggested in the DAP, please report these back to MSC for information. Consider transporting non-suited experiments when on the way to suit activities.

Hettrich, S. et al. (2013), "Efficiency Analysis of the MARS2013 Planning Strategy", Astrobiology 14:5

Sans Fuentes, S.A. (2012) "Human-robotic Mars science operations: target selection optimization via traverse and science planning". MSc thesis, University of Innsbruck, Innsbruck, Austria.

11/08/2015

Page 1 of 12

RSS mandate

Supporting the development of hardware and procedures

Analog astronaut science training

(Orgel, C. et al. (2013) Geological trainings for analogue astronauts: Lessons learned from the MARS2013 expedition, Morocco, EPSC conf proc)

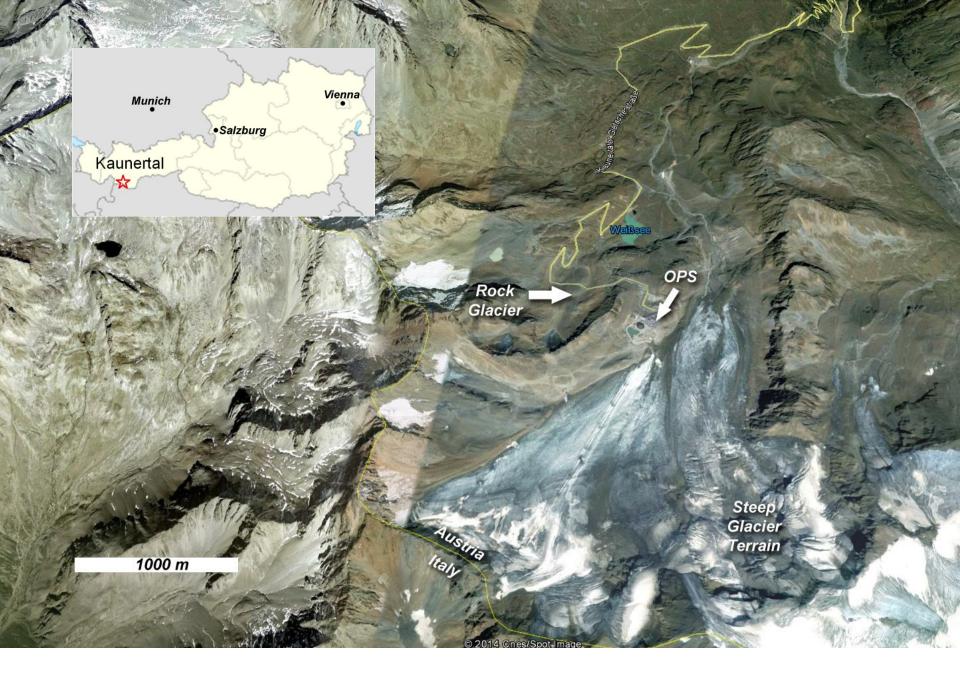
Near-real time data analysis

Post-mission data analysis

Multi-mission science roadmaps

AMADEE-15

Rock Glacier Mars Simulation Kaunertal, Austria / Aug. 2015

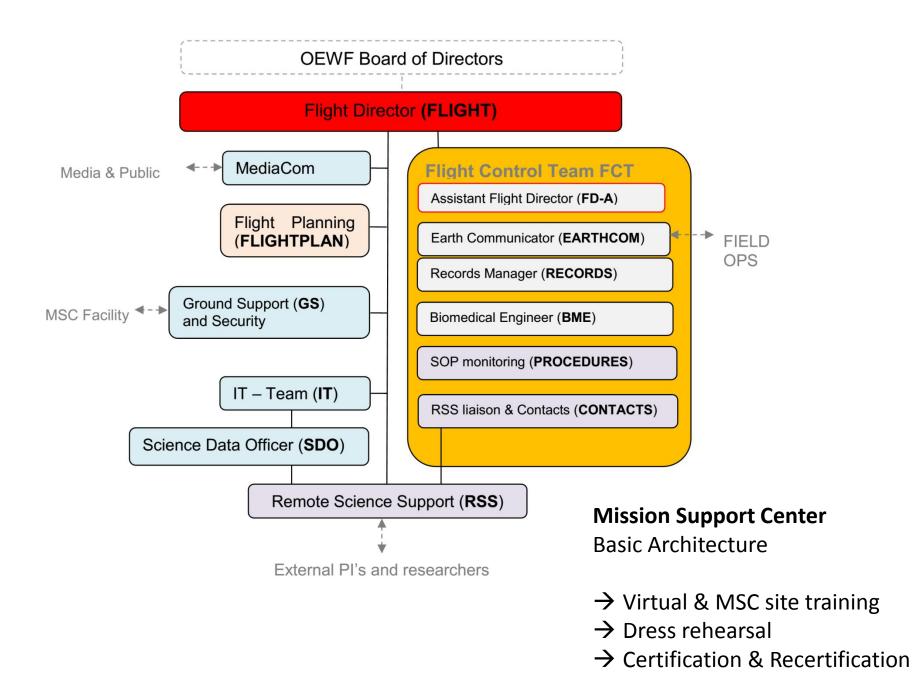

Mission rational

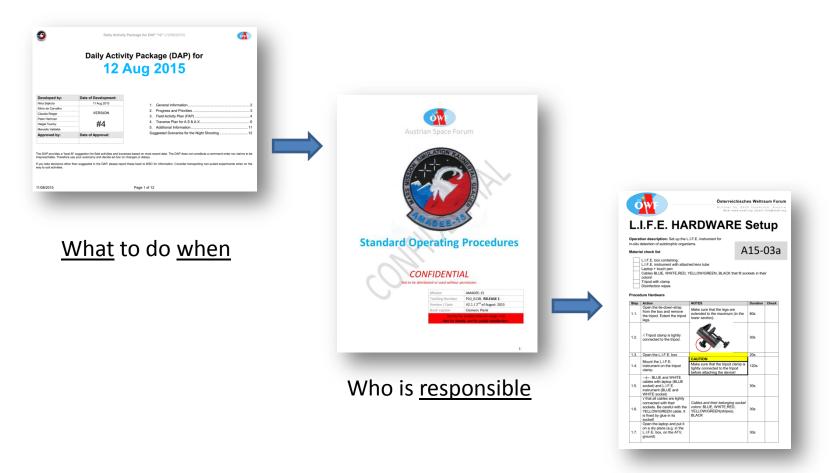
- Mission operations on planetary surfaces is different from e.g. ISS operations and needs new concepts (time-delay, long duration autonomy,...)
- OeWF and its partners have identified "doable niches", where a significant contribution can be made → (almost) open-source body-of-knowledge on human Mars mission operations

Mission objectives

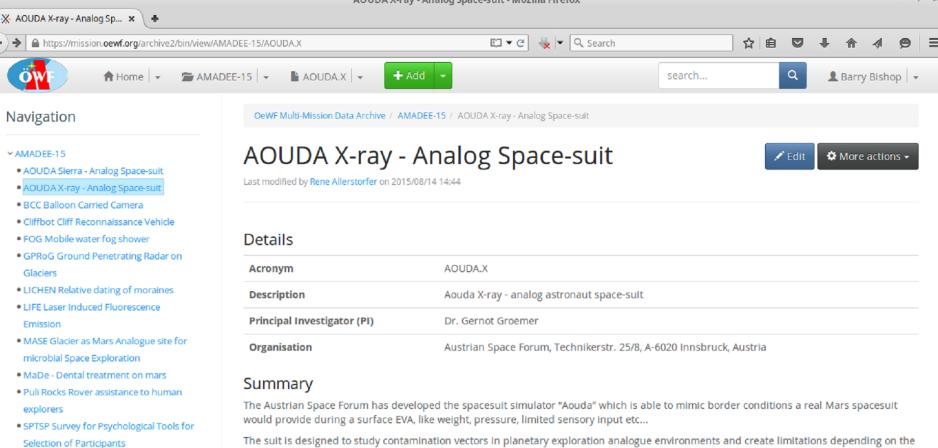
- Investigate the limitations and opportunities of studying a Martian (rock) glacier
- **Test** mission support strategies, decision making workflows and near-real time data analysis for flight planning.
- Serve as a high-visibility showcasing of analog field research

Base station coordinates: N 46.86320, E 10.71401




Mission Support Center Innsbruck/Austria

+ Support Rooms (Flight Planning, Ground Support, IT/Science Archive, Rem. Sci. Support)


+ ext. Rover control room(Budapest/Hungary)

Procedural Hierarchy

How to do it

- VEMES Virtualization Experiment for Mars Expedition Simulations
- AMADEE-15
- WoRIS Weathering of Rocks at the Ice

Aouda.X page from the multi-mission data archive

Objectives

pressure regime chosen for a simulation. An advanced human-machine interface, a set of sensors and a purpose designed software act as a

local virtual assistant to the crewman. It is designed to interact with other field components like the rover and instruments.

https://mission.oewf.org/archive

Experiments

Surveillance / Recon

- Cliffbot / Aerostat
- PULI ROCKS: GLXP rover terrain tests
- Ground Penetrating Radar

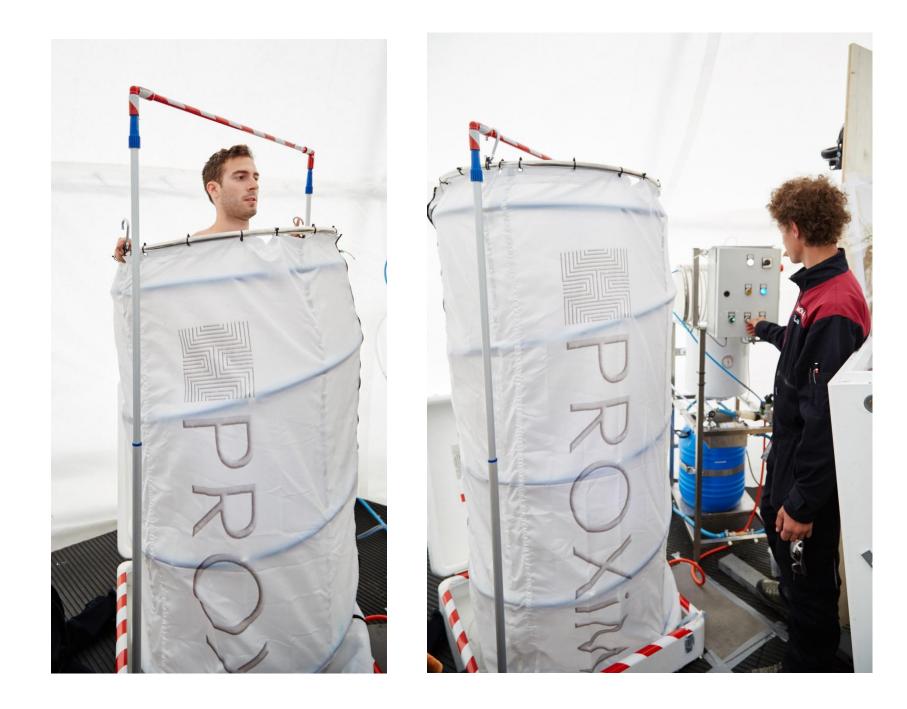
Astrobiology

- L.I.F.E.: Biomarker fluourescence instrument
- Glacier-MASE: glacial extremophile inventory
- WORIS: Lichenometry
- Morraine Dating

Human Factors & Operations

- VEMES Pilot-A: Virtual & Blended reality tests
- FOG: aerosol shower for low water usage
- Aouda Suit monitoring
- Dental procedures: 3d manufacturing

VERAS/VEMES PILOT-A Study



glacierMASE - extremophile inventory (EU/FP7 project)

Next Challenges...

- Suit development
- flight controller certifications for MSC & more standardized workflows
- Analog missions in 2016/2017

What we are looking for...

- Geoscientists with field experience
- Georadar / Sounding instruments
- Guest researchers & Interns & Students

Austrian Space Forum Gernot Groemer gernot.groemer@oewf.org