Geophysical Limitations on the Habitable Zone:

Volcanism and Plate Tectonics

L. Noack, A. Rivoldini and T. Van Hoolst, 28.10.2015, Budapest Royal Observatory of Belgium, Brussels

Habitable Zone

For Example 11 ike parameter companies

Mass and Interior Structure

Modelling Terrestrial Planets

Terrestrial = up to 2 Earth sizes / 10 Earth masses

Partial melting in mantle leads to depletion of material

Assume here that melt is immediately extracted to surface with 10%-25% extrusive melt incl. outgassing of volatiles

2D spherical annulus with compressible mantle flow and phase transitions

Melting: Density cross-over

Melt production over time

Reference simulation « Earth without plate tectonics »

- Beneath lid on solidus curve, adiabatic profile with depth

Earth-Mass Stagnant Lid Planets

Variation of iron content (assume pure iron, solid core)

Earth-Mass Stagnant Lid Planets

1 Earth mass

Earth-Sized Plate Tectonics Planets

Plate tectonics = sufficient outgassing

Stagnant Lid Planets: Different Masses

Use Earth-like interior structure (35 wt-% iron)

Different masses and core sizes

Here 2000K upper mantle temperature

Influence of temperature

...seems to be minor

Geophysical constraints for the HZ

- Surface volcanism of Earth-like planets constrained by mass and interior structure (less by temperature)
- Large-massive planets may not outgas a denseenough secondary atmosphere for the maximum greenhouse limit of the HZ
- A high iron content for planets of Earth-size or larger also leads to less or no outgassing
- Plate tectonics leads to immediate outgassing of several tens of bar CO₂ (independent of planet mass or interior structure) and may also be needed for long-term climate regulation

Current exoplanets: any "good" candidates?

[24 ly]

GJ 667C f*

EPIC 201912552 b

[1115 ly]

Kepler-442 b

Potentially Habitable Exoplanets

Ranked by Distance from Earth (light years)

tau Cet e*

[13 ly]

Kapteyn b

[38 ly][41 ly] GJ 422 b* GJ 180 b*

[561 ly] Kepler-186 f Kepler-22 b

GJ 832 c

[42 ly]

HD 40307 q

[783 ly]

K0I-4427 b*

Kepler-298 d

[17 ly]

GJ 682 c*

[49 ly] GJ 163 c

[851 ly] Kepler-440 b

GJ 667C c

[1063 ly]Kepler-61 b

[24 ly]GJ 667C e*

Kepler-174 d

Kepler-62 e

Neptune

Kepler-296 f

Current exoplanets: any "good" candidates?

Potentially Habitable Exoplanets

Ranked by Distance from Earth (light years)

