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CIRCUMSTELLAR HABITABLE ZONE (Huang 71959)
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Since stellar luminosity increases (~2) on the Main Sequence, CHZ migrates outwards with time
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Several propertles of the M|Iky Way disk vary with radius... and with tlme

Which one of them (if any) are important ‘for “Galactic habitability”
(=conditions favouring formation of telluric planets and survival of life)?

(Perhaps) metallicity, density of stars, frequency of supernova explosions...

They may define a “belt of life in the Galaxy”
(Maroshnik and Mukhin 1986; Balazs 1988)
Or a Galactic Habitable Zone

(Gonzalez , Brownlee and Ward 2001, Icarus, Scientific American
Lineweaver et al. 2004. Science)



The Milky Way disk today
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How did those profiles
evolve in the past ?
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PROBABILITY OF FORMING EXO-EARTHS ? Probably less dependent on metallicity
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Probability of having Earths
not destroyed by Hot Jupiters
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SUPERNOVAE . —
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. L gs in UV (few hours)

NEr9Y "~ 10% ergs in X-y {few months)
released :

~10°° ergs in Cosmic rays (few 102 yr)
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Induces chemical reactions
producing NO, which destroy
the protective O, layer
and increase the
solar UV flux on surface

Produces secondary
energetic particles and UV
reaching the surface

But :
1) Mutations may accelerate
and even induce evolution ~
_ “eude of mose 200°
2) Marine life appears rather
immune to such events




SUPERNOVAE AS A THREAT FOR LIFE (?)

SNII (core collapse of massive stars) are 10-5
more frequent and closer to the Galactic plane than 0-8
SNla (thermonuclear explosions of white dwarfs)
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none of these implies
definitive sterilisation...



Several major catastrophes
occurred in the last
500 million years
of multi-cellular life
on Earth

But the planet
was not sterilized.

Life not only survived,
but evolved
to higher levels
of complexity
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How to quantlfy the SN threat for life ?
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Utterly arbitrary quantification

(and even qualification)...



THE EVOLUTION OF THE MILKY WAY DISK (Boissier and NP 1999)
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Observation of abundance profiles at high redshift in lensed galaxies
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High-z abundance profiles appear to be much steeper than typical profiles of local disks



Propabilities...
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Stars with Earths having survived threat from Supernovae
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Relative probability to have life
around one star at a given position,

Probability of having life hosting planets
per unit volume (or surface density)
in a given position

Because the density of stars is higher in the inner disk, the probability of finding
a star with Earth-like planets inside a given volume is higher in the inner Galaxy

Similar results obtained in Gowanlock et al. (2011)
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Radial migration
affects a large fraction
of the disk

In the solar neighborhood
it brings stars

mostly from inner regions,,
(on average, 1.5 kpc inwards)

mostly older than the
locally formed ones (by 1.5 Gyr)

and mostly more metallic than
local ones (by 0.15 dex)



SUMMARY : GALACTIC HABITABLE ZONE

GHZ: impossible to define either qualitatively
(probability of creating vs. destroying habitability by various
- time and position dependent - factors in the MW disk)
or quantitatively

The more so, since radial migration of stars
mixes stellar populations across the MW disk

Also, simple and sea life forms appear to be robust
(quasi-immune to cosmic catastrophes)

The concept of GHZ definitively has no explanatory or predictive power
Is it a useless concept?

Perhaps not... it may allow us to structure our
thoughts / educated guesses / knowledge
about a very complex phenomenon



How philosophical preconceptions can affect physical “theories”.
A case in study : G. Gonzalez (Ball State University, Muncia, Indiana and
International Society for Complexity, Information and Design (Intelligent design movement)

We might say, then, that while the Earth is not the physical center of the universe, it seems, paradoxically, that it
i5 the "center” in a more significant sense.

Gonzalez: Yes. If you consider the Earth in the "parameter space" of habitability, then we are very near the
"center.”" Unfortunately, no one else has made this obvious observation. On the contrary, today scientists with
anti-religious agendas continue to employ the historically revisionist and empirically discredited metaphysical
Copernican Principle as a club to beat down anyone who publicly expresses religious ideas.

—i——

These scientists see the extraordinary nature of the Earth as a threat?

Gonzalez: Yes. And they have made public statements denouncing such views as "Pre-Copernican.”

———
How does your work fit info all of this?

Gonzalez: My work, in part, deals with astrobiology from an astronomer's viewpoint. | simply follow the empirical
evidence wherever it will lead me, and | try not to let philosophical preconceptions color my interpretations. Over
the past decade, | have amassed a body of data that continues to reveal the Earth's uncommon qualities.



And what about our galaxy? Is it extraordinary as well?

Gonzalez: Our galaxy too is atypical But again, most people are unaware of this, except for a few specialists in
extra-galactic astronomy. For example, our galaxy is among the 1 percent most luminous galaxies in the nearby
universe.

What effect does luminosity have on the Earth? Why is it important?

Gonzalez: The concentration of heavy elements correlates with the luminosity of a galaxy. More luminous
galaxies have more heavy elements, and, thus, are more likely to have Earth-mass planets.

How are others in your field reacting to your arguments? | am assuming that you are challenging scientific
orthodoxy, at least in astronomy?

Gonzalez: They don't know what to make of these evidences. They don't deny the data, but they don't quite
know how to fit it into their worldviews. A number of my colleagues have congratulated me for my work. Some
astronomers who were originally skeptical have moved in my direction as the evidences have continued to
accumulate.



